Analysis of Relative Navigation Architectures for Formation Flying

نویسندگان

  • Henry Jacques
  • Jaime Peraire
چکیده

Many future space missions will involve fleets with a large number of satellites flying in formation. Indeed, such fleets provably offer more reliability, redundancy, scalability and repeatability. However, large fleets also represent a challenge, especially for the navigation algorithms, which must provide an accurate estimate of the state of the fleet, with minimum requirements. Furthermore, as the number of satellites in the fleet increases, the computations to be performed increase dramatically, as well as the synchronization and communication requirements, making the design of efficient algorithms a difficult challenge. Based on previous studies, Decentralized Algorithms were designed to spread the computational task. Hierarchic Algorithms were also studied in order to reduce the synchronization requirements. This thesis presents both analytical and numerical comparisons of these algorithms in terms of accuracy, computational complexity, synchronization, and communication. The Decentralized and Hierarchic Algorithms were shown to have good performance in terms of accuracy, while involving far fewer computations than the Centralized Algorithm. As a result, they can be used as scalable algorithms for large formation flying fleets. The thesis investigated two additional problems often associated with navigation filters. The first study considers the problem of processing delayed measurements. Three strategies are analyzed, and compared in terms of the accuracy of the estimate they perform, and the memory and computations they require. One of these approach is shown to be efficient, being accurate without requiring heavy computations nor memory. The second study analyzes a particular instability of the Extended Kalman Filter, encountered when two sensors have very different accuracies. The instability is explained and a method to fix it is proposed. In the example analyzed the method proves to be efficient in addressing the instability. Thesis Supervisor: Jonathan P. How Title: Associate Professor of Aeronautics and Astronautics 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Satellite Formation Flying on Autonomous Navigation

Combining the technologies of the satellite formation flying with the satellite to satellite tracking (SST), the effect of satellite formation flying on autonomous navigation is analyzed in this paper. Considering the effect of satellite formation flying, the autonomous navigation system with relative inertial-position vector measurement is proposed firstly. Then, observability of the system wi...

متن کامل

Radio-frequency sensor fusion for relative navigation of formation flying satellites

The increasing need for robustness, reliability and flexibility of relative navigation systems imposed by the current and future autonomous formation flying missions, calls for the implementation of solutions using an alternative approach to single-sensor systems. These schemes possess different levels of availability, mainly driven by sensor failure and mission orbit profiles. The data obtaine...

متن کامل

Navigation Performance Predictions for the Orion Formation Flying Mission

This paper presents hardware-in-the-loop results that experimentally demonstrate precise relative navigation for true formation flying spacecraft applications. The approach is based on carrier-phase differential GPS, which is an ideal navigation sensor for these missions because it provides a direct measure of the relative positions and velocities of the vehicles in the fleet. In preparation fo...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

Stereo vision-based relative navigation algorithm for satellites formation flying

Space mission with multiple spacecraft formation is an important means to space operation. A new relative navigation algorithm based on stereo vision is developed aiming at high navigation precision requirement of spacecraft formation flying. It uses stereo vision camera attached on the tracking craft as measurement sensor, gets the relative location of target craft in the tracking craft body r...

متن کامل

Formation Flying System Design for a Planet-Finding Telescope-Occulter System

The concept of flying an occulting shade in formation with an orbiting space telescope to enable astronomical imaging of faint targets while blocking out background noise primarily from starlight near distant Earth-like planets has been studied in various forms over the past decade. Recent analysis has shown that this approach may offer comparable performance to that provided by a space-based c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013